

Tools for Assessing the Impacts of Food Packaging and Plastics

Mark S. Rossi

June 14, 2019

Clean Production Action – solutions for a safer & healthier tomorrow

Chemicals of High Concern (plastics)	Total Global Consumption (million metric tons)	Consumed by Plastics (%)	Consumed by Plastics (million metric tons)			
Ethylene dichloride (PVC) ^b	43.45	97%	42.14			
para-Xylene (PET) ^b	42.89	88%	37.62			
Benzene (PS) ^b	39.67	85%	33.52			
Vinyl chloride monomer (PVC) ^b	32.79	97%	31.80			
Ethylbenzene (ABS, PS) ^b	27.57	99%	27.29			
Styrene (ABS, PS, SAN, SBR) ^b	23.63	91%	21.38			
Ethylene glycol (PET, Nylon) ^a	21.00	80%	16.80			
Cumene (PC) ^b	12.23	84%	10.27			
Butadiene (ABS, SBR) ^b	9.28	94%	8.75			
Acrylonitrile (ABS)ª	5.35	96%	5.16			
Phenol (PC) ^c	8.90	55%	4.88			
Bisphenol A (PC, epoxy resins) ^c	4.04	96%	3.86			
Acetone (PC) ^d	5.67	45%	2.53			
Total	270.79	90%	243.48			

TABLE 2 Plastics and the Chemicals of High Concern they Consume

"Chemicals of High Concern" to human health or the environment = carcinogen, mutagen, reproductive / developmental toxicant; persistent, bioaccumulative, toxicant (PBT); endocrine disruptor; or chemical of equivalent concern.

1950 1960 1970 1980 1990 2000 2010 2020

FIGURE 2 World Plastics Production 1950–2012

50

Principles for Tools Development

- **Transparent**: all aspects of method disclosed freely to the public. Provide detailed guidance documents and trainings on GreenScreen & Chemical Footprint Project
- **Consistent**: applied in the same manner to each unit of analysis, be it chemical, material, product, corporation, etc.
- **Replicable**: results can be re-produced by others following the same rules
- **Simplify**: take complex information and make it useful for decision makers

Chemicals at the core of the circular economy

- Chemical hazard assessment method
- 18 endpoints
- Used by Apple, HP, Google, Levi's, Health Product Declaration Collaborative, USGBC LEED, etc.

GreenScreen® Evaluation of Methylene Chloride and Alternatives

		Group I Human Group II & II Human						ו	Ecotox			otox	Fate		Physical						
Chemical Name	CASRN	С	Μ	R	D	E	AT		ST		Ν	SnS	SnR	IrS	IrE	AA	CA	Ρ	В	RX	F
								Single	repeated	Single	repeated										
Methylene chloride	75-09-2	Н	NE	DG	DG	М	М	vH	н	vH	vH	L	DG	н	н	М	L	vH	vL	L	L
Benzyl alcohol	100-51-6	L	L	L	М	DG	М	L	L	М	Н	н	L	L	Н	L	L	vL	vL	L	L
2-(2-butoxyethooxy) ethanol	112-34-5	L	L	L	L	DG	L	L	н	DG	L	L	DG	М	н	L	L	vL	vL	L	м
Dimethyl sulfoxide	67-68-5	L	L	L	L	DG	L	L	L	L	L	L	L	М	М	L	L	L	vL	L	м
1,3-dioxolane	646-06-0	L	М	М	М	DG	L	м	м	М	L	L	DG	М	Н	L	L	М	vL	L	н
Estasol (dibasic esters mixture)	95481-62-2	L	L	L	М	М	L	м	М	М	DG	L	DG	L	М	М	L	vL	vL	М	L
d-Limonene	5989-27-5	L	L	DG	L	DG	L	L	L	DG	DG	н	DG	н	Н	vH	н	vL	м	L	М
Acetone	67-64-1	L	L	М	М	DG	L	М	М	М	М	L	DG	L	н	L	L	vL	vL	L	н
Methanol	67-56-1	NA	NA	NA	H	NA	н	vH	NA	NA	NA	NA	NA	NA	NA	L	L	vL	vL	NA	н
Toluene	108-88-3	DG	L	Н	H	М	L	М	н	М	Н	L	DG	н	L	н	Н	Н	vL	L	н
Formic acid	64-18-6	L	L	L	L	DG	Н	vH	Н	vH	DG	L	DG	vH	vH	М	М	vL	vL	L	М
Caustic soda	1310-73-2	L	L	L	L	L	Н	vH	L	L	L	L	DG	vH	vH	М	DG	L	vL	М	L

https://www.greenscreenchemicals.org/images/ee_images/uploads/resources/cpa_bz_methylene_chloride_rpt_2015_10_27.pdf

GreenScreen® Evaluation of Methylene Chloride and Alternatives

Chemical	CASRN	Benchmark Score
Methylene chloride	75-09-2	1
Benzyl alcohol	100-51-6	2
2-(2-butoxyethoxy) ethanol	112-34-5	2
Dimethyl sulfoxide (DMSO)	67-68-5	3
1,3-dioxolane	646-06-0	2
Estasol (dibasic esters mixture)l	95481-62-2	2
d-Limonene	5989-27-5	2
Acetone	67-64-1	2
Methanol	67-56-1	1
Toluene	108-88-3	1
Formic acid	64-18-6	2
Caustic soda	1310-73-2	2
EAN https://www.greenscreenchemicals.org/images	lee images/unloads/resources/cna bz me	athylene chloride rpt 2015 10 27

pdf

FIGURE ES-2 Estimated Chemical Footprint of IV Bags Made from PVC/DEHP and Polyolefins

Dignity Health, U.S. health care provider, reduced chemical footprint of IV bags by over 700,000 pounds over six year period by switching to polyolefin bags

Chemical Footprint of **Products** Commonly Used in **Pediatrics** Departments

COHCs =Chemicals of High Concern

CLEAN

ACTION

PRODUCTION

Eliminating PVC and associated **CoHCs in medical** supplies, would reduce 75% of the **CoHCs in medical** supplies

Simplify the complexity of toxicity for purchasers & provide manufacturers with incentives for disclosing chemicals in products, assessing hazards of those chemicals, and using safer chemicals

Resources

- GreenScreen[®] for Safer Chemicals Hazard Assessment Guidance For Chemicals, Polymers, and Products https://www.greenscreenchemicals.org/method/method-documents
- GreenScreen Certified[™] Standard for Textile Chemicals
 https://www.greenscreenchemicals.org/images/ee_images/uploads/resources/GreenScree
 nCertified_Standard-For-Textile-Chemicals-V1-0.pdf
- Plastics Scorecard https://www.bizngo.org/sustainable-materials/plastics-scorecard
- Chemical Footprint of Products Commonly Used in Pediatrics Departments

https://www.cleanproduction.org/images/ee_images/uploads/resources/ChemicalFootprin tPediatrics_Report_201712204.pdf

- Alternatives to Methylene Chloride in Paint and Varnish Strippers <u>https://www.greenscreenchemicals.org/images/ee_images/uploads/resources/cpa_bz_me_thylene_chloride_rpt_2015_10_27.pdf</u>
- Chemical Footprint Project 2018 Annual Report
 https://www.chemicalfootprint.org/assets/downloads/2018ChemicalFootprintProject
 <u>Report.pdf</u>
- The Chemical Footprint Project Survey: 2018 Guidance Document https://www.chemicalfootprint.org/assets/downloads/cfp_guidance_2018_20190102.pdf

Thank You ⁽²⁾ Questions?

Mark S. Rossi, PhD Executive Director Clean Production Action mark@cleanproduction.org

